Commentary Feed - forward inhibition : a novel cellular mechanism for the analgesic effect of substance

نویسندگان

  • Long-Jun Wu
  • Hui Xu
  • Shanelle W Ko
  • Megumu Yoshimura
  • Min Zhuo
چکیده

Substance P (SP) is a neuropeptide well known for its contribution to pain transmission in the spinal cord, however, less is known about the possible modulatory effects of SP. A new study by Gu and colleagues, published in Molecular Pain (2005, 1:20), describes its potential role in feed-forward inhibition in lamina V of the dorsal horn of the spinal cord. This inhibition seems to function through a direct excitation of GABAergic interneurons by substance P released from primary afferent fibers and has a distinct temporal phase of action from the well-described glutamate-dependent feedforward inhibition. It is believed that through this inhibition, substance P can balance nociceptive output from the spinal cord. The spinal cord dorsal horn is one of the relay stations for nociceptive information transmitted by peripheral sensory afferents. Some of these sensory afferents are substance P (SP) and glutamate-containing Aδand Cfibers. Upon noxious stimulation, particularly intense stimulation, tachykinins such as SP and neurokinin A (NKA) are released from primary afferent fibers and excite dorsal horn neurons via activation of the neurokinin-1 and neurokinin-2 receptors (NK1R and NK2R), respectively [1,2]. A series of studies have established a role for SP in the transmission of pain information [3,4]. Mice genetically engineered not to express the precursor of SP [4] and mice that do not express SP's target, the NK1R [3], both display reduced responses to painful stimuli. Despite these promising initial findings, NK1R antagonists have failed to produce analgesia in a variety of clinical pain models [5]. One possible explanation for these inconsistent results is that SP may produce mixed effects in sensory-related transmission and modulation. Indeed, Mohrland and Gebhart reported that an intrathecal injection of SP had antinociceptive effects [6]. Similarly, a study has found an analgesic effect mediated by SP and further suggested that it might be mediated by μ-2 opioid receptors [7]. Other studies demonstrate an interaction between tachykinin and opioid systems, lending support for a role of opioid receptors in SP-mediated antinociception [8]. Although many studies have highlighted the importance of SP in pain transmission, the synaptic mechanisms underlying the antinociceptive effect of SP remain unclear. In a recent study published in Molecular Pain, Gu and colleagues used a combination of electrophysiological, pharmacological, genetic and behavioral techniques in rats and found that SP can modulate inhibitory transmission in lamina V of the spinal cord dorsal horn, thereby exerting an analgesic effect on nociceptive sensory processing [9]. Through this finding, the study provides novel insight into the role of SP in the spinal cord dorsal Published: 18 November 2005 Molecular Pain 2005, 1:34 doi:10.1186/1744-8069-1-34 Received: 29 September 2005 Accepted: 18 November 2005 This article is available from: http://www.molecularpain.com/content/1/1/34 © 2005 Wu et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feed-forward inhibition: a novel cellular mechanism for the analgesic effect of substance P

Substance P (SP) is a neuropeptide well known for its contribution to pain transmission in the spinal cord, however, less is known about the possible modulatory effects of SP. A new study by Gu and colleagues, published in Molecular Pain (2005, 1:20), describes its potential role in feed-forward inhibition in lamina V of the dorsal horn of the spinal cord. This inhibition seems to function thro...

متن کامل

STRUCTURAL DAMAGE DETECTION BY MODEL UPDATING METHOD BASED ON CASCADE FEED-FORWARD NEURAL NETWORK AS AN EFFICIENT APPROXIMATION MECHANISM

Vibration based techniques of structural damage detection using model updating method, are computationally expensive for large-scale structures. In this study, after locating precisely the eventual damage of a structure using modal strain energy based index (MSEBI), To efficiently reduce the computational cost of model updating during the optimization process of damage severity detection, the M...

متن کامل

Study on the possible similar mechanism of ultra low dose-induced hyperalgesia and development of tolerance to analgesia in male rats: an study based on the role of Gs signaling pathway

Introduction: Ultra low dose (ULD) morphine induces hyperalgesia which is mediated by excitatory Gscoupled opioid receptors. This study was designed to investigate the development of tolerance to hyperalgesic effect of morphine. Also we attempt to seek possible similarity, in view of Gs proteins, between hyperalgesic effect of ULD and hyperalgesic effect after tolerance to HD. Method: Male ...

متن کامل

Role of matrix metalloproteinase II on analgesic effect of nitric oxide inhibition in rat

Abstract Introduction: Matrix metalloproteinase 2 is one of the inflammatory mediators that is involved in nociceptive processing and its production is regulated by many inflammatory factors such as nitric oxide. We studied the role of MMP-2 on the analgesic effects of nNOS inhibitor. Methods: Considering that nitric oxide has many roles in pain processing, we studied the CSF levels of MMP-2 ...

متن کامل

Cellular SRC kinases and dsRNA dependent protein kinase (PKR) play key role in intracellular viral (CVB3) replication

SRC kinases and PKR are intracellular protein kinases, which play key roles in intracellular viral replication. In this research, the effect of SRC kinase inhibition and PKR activation and inhibition on replication of coxsakievirus (CVB3), an entrovirus of the family picornaviridae – causative agents of fatal myocarditis, was studied. Vero and Hela cells were cultured and infected with CVB3 in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015